2 d - 0,5 ( 4 d - 1 ) = - 0,7 ( d - 2 )
Solve for d
d=\frac{9}{7}\approx 1,285714286
Share
Copied to clipboard
2d-2d+0,5=-0,7\left(d-2\right)
Use the distributive property to multiply -0,5 by 4d-1.
0,5=-0,7\left(d-2\right)
Combine 2d and -2d to get 0.
0,5=-0,7d+1,4
Use the distributive property to multiply -0,7 by d-2.
-0,7d+1,4=0,5
Swap sides so that all variable terms are on the left hand side.
-0,7d=0,5-1,4
Subtract 1,4 from both sides.
-0,7d=-0,9
Subtract 1,4 from 0,5 to get -0,9.
d=\frac{-0,9}{-0,7}
Divide both sides by -0,7.
d=\frac{-9}{-7}
Expand \frac{-0,9}{-0,7} by multiplying both numerator and the denominator by 10.
d=\frac{9}{7}
Fraction \frac{-9}{-7} can be simplified to \frac{9}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}