Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

2d^{2}-95d+3=0
Multiply 5 and 19 to get 95.
d=\frac{-\left(-95\right)±\sqrt{\left(-95\right)^{2}-4\times 2\times 3}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -95 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-95\right)±\sqrt{9025-4\times 2\times 3}}{2\times 2}
Square -95.
d=\frac{-\left(-95\right)±\sqrt{9025-8\times 3}}{2\times 2}
Multiply -4 times 2.
d=\frac{-\left(-95\right)±\sqrt{9025-24}}{2\times 2}
Multiply -8 times 3.
d=\frac{-\left(-95\right)±\sqrt{9001}}{2\times 2}
Add 9025 to -24.
d=\frac{95±\sqrt{9001}}{2\times 2}
The opposite of -95 is 95.
d=\frac{95±\sqrt{9001}}{4}
Multiply 2 times 2.
d=\frac{\sqrt{9001}+95}{4}
Now solve the equation d=\frac{95±\sqrt{9001}}{4} when ± is plus. Add 95 to \sqrt{9001}.
d=\frac{95-\sqrt{9001}}{4}
Now solve the equation d=\frac{95±\sqrt{9001}}{4} when ± is minus. Subtract \sqrt{9001} from 95.
d=\frac{\sqrt{9001}+95}{4} d=\frac{95-\sqrt{9001}}{4}
The equation is now solved.
2d^{2}-95d+3=0
Multiply 5 and 19 to get 95.
2d^{2}-95d=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{2d^{2}-95d}{2}=-\frac{3}{2}
Divide both sides by 2.
d^{2}-\frac{95}{2}d=-\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
d^{2}-\frac{95}{2}d+\left(-\frac{95}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{95}{4}\right)^{2}
Divide -\frac{95}{2}, the coefficient of the x term, by 2 to get -\frac{95}{4}. Then add the square of -\frac{95}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-\frac{95}{2}d+\frac{9025}{16}=-\frac{3}{2}+\frac{9025}{16}
Square -\frac{95}{4} by squaring both the numerator and the denominator of the fraction.
d^{2}-\frac{95}{2}d+\frac{9025}{16}=\frac{9001}{16}
Add -\frac{3}{2} to \frac{9025}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d-\frac{95}{4}\right)^{2}=\frac{9001}{16}
Factor d^{2}-\frac{95}{2}d+\frac{9025}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{95}{4}\right)^{2}}=\sqrt{\frac{9001}{16}}
Take the square root of both sides of the equation.
d-\frac{95}{4}=\frac{\sqrt{9001}}{4} d-\frac{95}{4}=-\frac{\sqrt{9001}}{4}
Simplify.
d=\frac{\sqrt{9001}+95}{4} d=\frac{95-\sqrt{9001}}{4}
Add \frac{95}{4} to both sides of the equation.