Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

2c^{2}-18-3c=-c^{2}-9
Subtract 3c from both sides.
2c^{2}-18-3c+c^{2}=-9
Add c^{2} to both sides.
3c^{2}-18-3c=-9
Combine 2c^{2} and c^{2} to get 3c^{2}.
3c^{2}-18-3c+9=0
Add 9 to both sides.
3c^{2}-9-3c=0
Add -18 and 9 to get -9.
3c^{2}-3c-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-9\right)}}{2\times 3}
Square -3.
c=\frac{-\left(-3\right)±\sqrt{9-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
c=\frac{-\left(-3\right)±\sqrt{9+108}}{2\times 3}
Multiply -12 times -9.
c=\frac{-\left(-3\right)±\sqrt{117}}{2\times 3}
Add 9 to 108.
c=\frac{-\left(-3\right)±3\sqrt{13}}{2\times 3}
Take the square root of 117.
c=\frac{3±3\sqrt{13}}{2\times 3}
The opposite of -3 is 3.
c=\frac{3±3\sqrt{13}}{6}
Multiply 2 times 3.
c=\frac{3\sqrt{13}+3}{6}
Now solve the equation c=\frac{3±3\sqrt{13}}{6} when ± is plus. Add 3 to 3\sqrt{13}.
c=\frac{\sqrt{13}+1}{2}
Divide 3+3\sqrt{13} by 6.
c=\frac{3-3\sqrt{13}}{6}
Now solve the equation c=\frac{3±3\sqrt{13}}{6} when ± is minus. Subtract 3\sqrt{13} from 3.
c=\frac{1-\sqrt{13}}{2}
Divide 3-3\sqrt{13} by 6.
c=\frac{\sqrt{13}+1}{2} c=\frac{1-\sqrt{13}}{2}
The equation is now solved.
2c^{2}-18-3c=-c^{2}-9
Subtract 3c from both sides.
2c^{2}-18-3c+c^{2}=-9
Add c^{2} to both sides.
3c^{2}-18-3c=-9
Combine 2c^{2} and c^{2} to get 3c^{2}.
3c^{2}-3c=-9+18
Add 18 to both sides.
3c^{2}-3c=9
Add -9 and 18 to get 9.
\frac{3c^{2}-3c}{3}=\frac{9}{3}
Divide both sides by 3.
c^{2}+\left(-\frac{3}{3}\right)c=\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
c^{2}-c=\frac{9}{3}
Divide -3 by 3.
c^{2}-c=3
Divide 9 by 3.
c^{2}-c+\left(-\frac{1}{2}\right)^{2}=3+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-c+\frac{1}{4}=3+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
c^{2}-c+\frac{1}{4}=\frac{13}{4}
Add 3 to \frac{1}{4}.
\left(c-\frac{1}{2}\right)^{2}=\frac{13}{4}
Factor c^{2}-c+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
c-\frac{1}{2}=\frac{\sqrt{13}}{2} c-\frac{1}{2}=-\frac{\sqrt{13}}{2}
Simplify.
c=\frac{\sqrt{13}+1}{2} c=\frac{1-\sqrt{13}}{2}
Add \frac{1}{2} to both sides of the equation.