Solve for b
b=\frac{x+3}{2\left(1-x\right)}
x\neq 1
Solve for x
x=\frac{2b-3}{2b+1}
b\neq -\frac{1}{2}
Graph
Share
Copied to clipboard
2b-x-2bx=3
Subtract 2bx from both sides.
2b-2bx=3+x
Add x to both sides.
\left(2-2x\right)b=3+x
Combine all terms containing b.
\left(2-2x\right)b=x+3
The equation is in standard form.
\frac{\left(2-2x\right)b}{2-2x}=\frac{x+3}{2-2x}
Divide both sides by -2x+2.
b=\frac{x+3}{2-2x}
Dividing by -2x+2 undoes the multiplication by -2x+2.
b=\frac{x+3}{2\left(1-x\right)}
Divide x+3 by -2x+2.
2b-x-2bx=3
Subtract 2bx from both sides.
-x-2bx=3-2b
Subtract 2b from both sides.
\left(-1-2b\right)x=3-2b
Combine all terms containing x.
\left(-2b-1\right)x=3-2b
The equation is in standard form.
\frac{\left(-2b-1\right)x}{-2b-1}=\frac{3-2b}{-2b-1}
Divide both sides by -1-2b.
x=\frac{3-2b}{-2b-1}
Dividing by -1-2b undoes the multiplication by -1-2b.
x=-\frac{3-2b}{2b+1}
Divide 3-2b by -1-2b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}