Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b\left(2b-1\right)=0
Factor out b.
b=0 b=\frac{1}{2}
To find equation solutions, solve b=0 and 2b-1=0.
2b^{2}-b=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-1\right)±\sqrt{1}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-1\right)±1}{2\times 2}
Take the square root of 1.
b=\frac{1±1}{2\times 2}
The opposite of -1 is 1.
b=\frac{1±1}{4}
Multiply 2 times 2.
b=\frac{2}{4}
Now solve the equation b=\frac{1±1}{4} when ± is plus. Add 1 to 1.
b=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
b=\frac{0}{4}
Now solve the equation b=\frac{1±1}{4} when ± is minus. Subtract 1 from 1.
b=0
Divide 0 by 4.
b=\frac{1}{2} b=0
The equation is now solved.
2b^{2}-b=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2b^{2}-b}{2}=\frac{0}{2}
Divide both sides by 2.
b^{2}-\frac{1}{2}b=\frac{0}{2}
Dividing by 2 undoes the multiplication by 2.
b^{2}-\frac{1}{2}b=0
Divide 0 by 2.
b^{2}-\frac{1}{2}b+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{1}{2}b+\frac{1}{16}=\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(b-\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor b^{2}-\frac{1}{2}b+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
b-\frac{1}{4}=\frac{1}{4} b-\frac{1}{4}=-\frac{1}{4}
Simplify.
b=\frac{1}{2} b=0
Add \frac{1}{4} to both sides of the equation.