Solve for b
b=\frac{\sqrt{15}-3}{2}\approx 0.436491673
b=\frac{-\sqrt{15}-3}{2}\approx -3.436491673
Share
Copied to clipboard
2b^{2}+6b-1=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2b^{2}+6b-1-2=2-2
Subtract 2 from both sides of the equation.
2b^{2}+6b-1-2=0
Subtracting 2 from itself leaves 0.
2b^{2}+6b-3=0
Subtract 2 from -1.
b=\frac{-6±\sqrt{6^{2}-4\times 2\left(-3\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-6±\sqrt{36-4\times 2\left(-3\right)}}{2\times 2}
Square 6.
b=\frac{-6±\sqrt{36-8\left(-3\right)}}{2\times 2}
Multiply -4 times 2.
b=\frac{-6±\sqrt{36+24}}{2\times 2}
Multiply -8 times -3.
b=\frac{-6±\sqrt{60}}{2\times 2}
Add 36 to 24.
b=\frac{-6±2\sqrt{15}}{2\times 2}
Take the square root of 60.
b=\frac{-6±2\sqrt{15}}{4}
Multiply 2 times 2.
b=\frac{2\sqrt{15}-6}{4}
Now solve the equation b=\frac{-6±2\sqrt{15}}{4} when ± is plus. Add -6 to 2\sqrt{15}.
b=\frac{\sqrt{15}-3}{2}
Divide -6+2\sqrt{15} by 4.
b=\frac{-2\sqrt{15}-6}{4}
Now solve the equation b=\frac{-6±2\sqrt{15}}{4} when ± is minus. Subtract 2\sqrt{15} from -6.
b=\frac{-\sqrt{15}-3}{2}
Divide -6-2\sqrt{15} by 4.
b=\frac{\sqrt{15}-3}{2} b=\frac{-\sqrt{15}-3}{2}
The equation is now solved.
2b^{2}+6b-1=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2b^{2}+6b-1-\left(-1\right)=2-\left(-1\right)
Add 1 to both sides of the equation.
2b^{2}+6b=2-\left(-1\right)
Subtracting -1 from itself leaves 0.
2b^{2}+6b=3
Subtract -1 from 2.
\frac{2b^{2}+6b}{2}=\frac{3}{2}
Divide both sides by 2.
b^{2}+\frac{6}{2}b=\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
b^{2}+3b=\frac{3}{2}
Divide 6 by 2.
b^{2}+3b+\left(\frac{3}{2}\right)^{2}=\frac{3}{2}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+3b+\frac{9}{4}=\frac{3}{2}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
b^{2}+3b+\frac{9}{4}=\frac{15}{4}
Add \frac{3}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b+\frac{3}{2}\right)^{2}=\frac{15}{4}
Factor b^{2}+3b+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{3}{2}\right)^{2}}=\sqrt{\frac{15}{4}}
Take the square root of both sides of the equation.
b+\frac{3}{2}=\frac{\sqrt{15}}{2} b+\frac{3}{2}=-\frac{\sqrt{15}}{2}
Simplify.
b=\frac{\sqrt{15}-3}{2} b=\frac{-\sqrt{15}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}