Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{b+c}{2x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&b=-c\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{b+c}{2x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&b=-c\text{ and }x=0\end{matrix}\right.
Solve for b
b=2ax-c
Graph
Share
Copied to clipboard
2ax=c+b
Add b to both sides.
2xa=b+c
The equation is in standard form.
\frac{2xa}{2x}=\frac{b+c}{2x}
Divide both sides by 2x.
a=\frac{b+c}{2x}
Dividing by 2x undoes the multiplication by 2x.
2ax=c+b
Add b to both sides.
2xa=b+c
The equation is in standard form.
\frac{2xa}{2x}=\frac{b+c}{2x}
Divide both sides by 2x.
a=\frac{b+c}{2x}
Dividing by 2x undoes the multiplication by 2x.
-b=c-2ax
Subtract 2ax from both sides.
\frac{-b}{-1}=\frac{c-2ax}{-1}
Divide both sides by -1.
b=\frac{c-2ax}{-1}
Dividing by -1 undoes the multiplication by -1.
b=-\left(c-2ax\right)
Divide c-2ax by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}