Factor
2ax\left(x-9\right)\left(x-5\right)
Evaluate
2ax\left(x-9\right)\left(x-5\right)
Graph
Share
Copied to clipboard
2\left(ax^{3}-14ax^{2}+45ax\right)
Factor out 2.
ax\left(x^{2}-14x+45\right)
Consider ax^{3}-14ax^{2}+45ax. Factor out ax.
p+q=-14 pq=1\times 45=45
Consider x^{2}-14x+45. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+px+qx+45. To find p and q, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since pq is positive, p and q have the same sign. Since p+q is negative, p and q are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
p=-9 q=-5
The solution is the pair that gives sum -14.
\left(x^{2}-9x\right)+\left(-5x+45\right)
Rewrite x^{2}-14x+45 as \left(x^{2}-9x\right)+\left(-5x+45\right).
x\left(x-9\right)-5\left(x-9\right)
Factor out x in the first and -5 in the second group.
\left(x-9\right)\left(x-5\right)
Factor out common term x-9 by using distributive property.
2ax\left(x-9\right)\left(x-5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}