Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{b\left(2d+1\right)}{2\left(c+2d\right)}\text{, }&c\neq -2d\\a\in \mathrm{C}\text{, }&\left(b=0\text{ and }c=-2d\right)\text{ or }\left(d=-\frac{1}{2}\text{ and }c=1\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{2a\left(c+2d\right)}{2d+1}\text{, }&d\neq -\frac{1}{2}\\b\in \mathrm{C}\text{, }&\left(a=0\text{ or }c=1\right)\text{ and }d=-\frac{1}{2}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{b\left(2d+1\right)}{2\left(c+2d\right)}\text{, }&c\neq -2d\\a\in \mathrm{R}\text{, }&\left(b=0\text{ and }c=-2d\right)\text{ or }\left(d=-\frac{1}{2}\text{ and }c=1\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{2a\left(c+2d\right)}{2d+1}\text{, }&d\neq -\frac{1}{2}\\b\in \mathrm{R}\text{, }&\left(a=0\text{ or }c=1\right)\text{ and }d=-\frac{1}{2}\end{matrix}\right.
Share
Copied to clipboard
2ac+4ad=b+2bd
Add 2bd to both sides.
\left(2c+4d\right)a=b+2bd
Combine all terms containing a.
\left(2c+4d\right)a=2bd+b
The equation is in standard form.
\frac{\left(2c+4d\right)a}{2c+4d}=\frac{2bd+b}{2c+4d}
Divide both sides by 2c+4d.
a=\frac{2bd+b}{2c+4d}
Dividing by 2c+4d undoes the multiplication by 2c+4d.
a=\frac{b\left(2d+1\right)}{2\left(c+2d\right)}
Divide b+2bd by 2c+4d.
2ac-2bd+4ad-b=0
Subtract b from both sides.
-2bd+4ad-b=-2ac
Subtract 2ac from both sides. Anything subtracted from zero gives its negation.
-2bd-b=-2ac-4ad
Subtract 4ad from both sides.
\left(-2d-1\right)b=-2ac-4ad
Combine all terms containing b.
\frac{\left(-2d-1\right)b}{-2d-1}=\frac{-2ac-4ad}{-2d-1}
Divide both sides by -2d-1.
b=\frac{-2ac-4ad}{-2d-1}
Dividing by -2d-1 undoes the multiplication by -2d-1.
b=\frac{2a\left(c+2d\right)}{2d+1}
Divide -2ac-4ad by -2d-1.
2ac+4ad=b+2bd
Add 2bd to both sides.
\left(2c+4d\right)a=b+2bd
Combine all terms containing a.
\left(2c+4d\right)a=2bd+b
The equation is in standard form.
\frac{\left(2c+4d\right)a}{2c+4d}=\frac{2bd+b}{2c+4d}
Divide both sides by 2c+4d.
a=\frac{2bd+b}{2c+4d}
Dividing by 2c+4d undoes the multiplication by 2c+4d.
a=\frac{b\left(2d+1\right)}{2\left(c+2d\right)}
Divide b+2bd by 2c+4d.
2ac-2bd+4ad-b=0
Subtract b from both sides.
-2bd+4ad-b=-2ac
Subtract 2ac from both sides. Anything subtracted from zero gives its negation.
-2bd-b=-2ac-4ad
Subtract 4ad from both sides.
\left(-2d-1\right)b=-2ac-4ad
Combine all terms containing b.
\frac{\left(-2d-1\right)b}{-2d-1}=\frac{-2ac-4ad}{-2d-1}
Divide both sides by -2d-1.
b=\frac{-2ac-4ad}{-2d-1}
Dividing by -2d-1 undoes the multiplication by -2d-1.
b=\frac{2a\left(c+2d\right)}{2d+1}
Divide -2ac-4ad by -2d-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}