Solve for a
a=-\frac{3b-2}{2b-1}
b\neq \frac{1}{2}
Solve for b
b=\frac{a+2}{2a+3}
a\neq -\frac{3}{2}
Share
Copied to clipboard
2ab-a-3=-1-3b
Subtract 3b from both sides.
2ab-a=-1-3b+3
Add 3 to both sides.
2ab-a=2-3b
Add -1 and 3 to get 2.
\left(2b-1\right)a=2-3b
Combine all terms containing a.
\frac{\left(2b-1\right)a}{2b-1}=\frac{2-3b}{2b-1}
Divide both sides by 2b-1.
a=\frac{2-3b}{2b-1}
Dividing by 2b-1 undoes the multiplication by 2b-1.
2ab+3b-3=-1+a
Add a to both sides.
2ab+3b=-1+a+3
Add 3 to both sides.
2ab+3b=2+a
Add -1 and 3 to get 2.
\left(2a+3\right)b=2+a
Combine all terms containing b.
\left(2a+3\right)b=a+2
The equation is in standard form.
\frac{\left(2a+3\right)b}{2a+3}=\frac{a+2}{2a+3}
Divide both sides by 2a+3.
b=\frac{a+2}{2a+3}
Dividing by 2a+3 undoes the multiplication by 2a+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}