Solve for a
a=-6n-14
Solve for n
n=-\frac{a}{6}-\frac{7}{3}
Share
Copied to clipboard
2a-28-4a=12n
Use the distributive property to multiply -4 by 7+a.
-2a-28=12n
Combine 2a and -4a to get -2a.
-2a=12n+28
Add 28 to both sides.
\frac{-2a}{-2}=\frac{12n+28}{-2}
Divide both sides by -2.
a=\frac{12n+28}{-2}
Dividing by -2 undoes the multiplication by -2.
a=-6n-14
Divide 12n+28 by -2.
2a-28-4a=12n
Use the distributive property to multiply -4 by 7+a.
-2a-28=12n
Combine 2a and -4a to get -2a.
12n=-2a-28
Swap sides so that all variable terms are on the left hand side.
\frac{12n}{12}=\frac{-2a-28}{12}
Divide both sides by 12.
n=\frac{-2a-28}{12}
Dividing by 12 undoes the multiplication by 12.
n=-\frac{a}{6}-\frac{7}{3}
Divide -2a-28 by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}