Solve for a
a\leq \frac{1}{4}
Share
Copied to clipboard
2a+5+4a\leq 4a+\frac{11}{2}
Add -3 and 8 to get 5.
6a+5\leq 4a+\frac{11}{2}
Combine 2a and 4a to get 6a.
6a+5-4a\leq \frac{11}{2}
Subtract 4a from both sides.
2a+5\leq \frac{11}{2}
Combine 6a and -4a to get 2a.
2a\leq \frac{11}{2}-5
Subtract 5 from both sides.
2a\leq \frac{11}{2}-\frac{10}{2}
Convert 5 to fraction \frac{10}{2}.
2a\leq \frac{11-10}{2}
Since \frac{11}{2} and \frac{10}{2} have the same denominator, subtract them by subtracting their numerators.
2a\leq \frac{1}{2}
Subtract 10 from 11 to get 1.
a\leq \frac{\frac{1}{2}}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
a\leq \frac{1}{2\times 2}
Express \frac{\frac{1}{2}}{2} as a single fraction.
a\leq \frac{1}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}