Solve for a
a=\frac{129}{2}-3m
Solve for m
m=-\frac{a}{3}+\frac{43}{2}
Share
Copied to clipboard
2a+6m=129
Add 129 to both sides. Anything plus zero gives itself.
2a=129-6m
Subtract 6m from both sides.
\frac{2a}{2}=\frac{129-6m}{2}
Divide both sides by 2.
a=\frac{129-6m}{2}
Dividing by 2 undoes the multiplication by 2.
a=\frac{129}{2}-3m
Divide 129-6m by 2.
-129+6m=-2a
Subtract 2a from both sides. Anything subtracted from zero gives its negation.
6m=-2a+129
Add 129 to both sides.
6m=129-2a
The equation is in standard form.
\frac{6m}{6}=\frac{129-2a}{6}
Divide both sides by 6.
m=\frac{129-2a}{6}
Dividing by 6 undoes the multiplication by 6.
m=-\frac{a}{3}+\frac{43}{2}
Divide -2a+129 by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}