Evaluate
a^{2}+a+6
Expand
a^{2}+a+6
Share
Copied to clipboard
2a^{2}+2a-\left(a-2\right)\left(a+3\right)
Use the distributive property to multiply 2a by a+1.
2a^{2}+2a-\left(a^{2}+3a-2a-6\right)
Apply the distributive property by multiplying each term of a-2 by each term of a+3.
2a^{2}+2a-\left(a^{2}+a-6\right)
Combine 3a and -2a to get a.
2a^{2}+2a-a^{2}-a-\left(-6\right)
To find the opposite of a^{2}+a-6, find the opposite of each term.
2a^{2}+2a-a^{2}-a+6
The opposite of -6 is 6.
a^{2}+2a-a+6
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}+a+6
Combine 2a and -a to get a.
2a^{2}+2a-\left(a-2\right)\left(a+3\right)
Use the distributive property to multiply 2a by a+1.
2a^{2}+2a-\left(a^{2}+3a-2a-6\right)
Apply the distributive property by multiplying each term of a-2 by each term of a+3.
2a^{2}+2a-\left(a^{2}+a-6\right)
Combine 3a and -2a to get a.
2a^{2}+2a-a^{2}-a-\left(-6\right)
To find the opposite of a^{2}+a-6, find the opposite of each term.
2a^{2}+2a-a^{2}-a+6
The opposite of -6 is 6.
a^{2}+2a-a+6
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}+a+6
Combine 2a and -a to get a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}