Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{2}\left(2a-3b\right)-16b^{2}\left(2a-3b\right)
Do the grouping 2a^{3}-3a^{2}b-32ab^{2}+48b^{3}=\left(2a^{3}-3a^{2}b\right)+\left(-32ab^{2}+48b^{3}\right), and factor out a^{2} in the first and -16b^{2} in the second group.
\left(2a-3b\right)\left(a^{2}-16b^{2}\right)
Factor out common term 2a-3b by using distributive property.
\left(a-4b\right)\left(a+4b\right)
Consider a^{2}-16b^{2}. Rewrite a^{2}-16b^{2} as a^{2}-\left(4b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-4b\right)\left(a+4b\right)\left(2a-3b\right)
Rewrite the complete factored expression.