Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

2a^{2}-8a-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-5\right)}}{2\times 2}
Square -8.
a=\frac{-\left(-8\right)±\sqrt{64-8\left(-5\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-8\right)±\sqrt{64+40}}{2\times 2}
Multiply -8 times -5.
a=\frac{-\left(-8\right)±\sqrt{104}}{2\times 2}
Add 64 to 40.
a=\frac{-\left(-8\right)±2\sqrt{26}}{2\times 2}
Take the square root of 104.
a=\frac{8±2\sqrt{26}}{2\times 2}
The opposite of -8 is 8.
a=\frac{8±2\sqrt{26}}{4}
Multiply 2 times 2.
a=\frac{2\sqrt{26}+8}{4}
Now solve the equation a=\frac{8±2\sqrt{26}}{4} when ± is plus. Add 8 to 2\sqrt{26}.
a=\frac{\sqrt{26}}{2}+2
Divide 8+2\sqrt{26} by 4.
a=\frac{8-2\sqrt{26}}{4}
Now solve the equation a=\frac{8±2\sqrt{26}}{4} when ± is minus. Subtract 2\sqrt{26} from 8.
a=-\frac{\sqrt{26}}{2}+2
Divide 8-2\sqrt{26} by 4.
a=\frac{\sqrt{26}}{2}+2 a=-\frac{\sqrt{26}}{2}+2
The equation is now solved.
2a^{2}-8a-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2a^{2}-8a-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
2a^{2}-8a=-\left(-5\right)
Subtracting -5 from itself leaves 0.
2a^{2}-8a=5
Subtract -5 from 0.
\frac{2a^{2}-8a}{2}=\frac{5}{2}
Divide both sides by 2.
a^{2}+\left(-\frac{8}{2}\right)a=\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-4a=\frac{5}{2}
Divide -8 by 2.
a^{2}-4a+\left(-2\right)^{2}=\frac{5}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=\frac{5}{2}+4
Square -2.
a^{2}-4a+4=\frac{13}{2}
Add \frac{5}{2} to 4.
\left(a-2\right)^{2}=\frac{13}{2}
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{\frac{13}{2}}
Take the square root of both sides of the equation.
a-2=\frac{\sqrt{26}}{2} a-2=-\frac{\sqrt{26}}{2}
Simplify.
a=\frac{\sqrt{26}}{2}+2 a=-\frac{\sqrt{26}}{2}+2
Add 2 to both sides of the equation.
x ^ 2 -4x -\frac{5}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = 4 rs = -\frac{5}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 2 - u s = 2 + u
Two numbers r and s sum up to 4 exactly when the average of the two numbers is \frac{1}{2}*4 = 2. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(2 - u) (2 + u) = -\frac{5}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{2}
4 - u^2 = -\frac{5}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{2}-4 = -\frac{13}{2}
Simplify the expression by subtracting 4 on both sides
u^2 = \frac{13}{2} u = \pm\sqrt{\frac{13}{2}} = \pm \frac{\sqrt{13}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =2 - \frac{\sqrt{13}}{\sqrt{2}} = -0.550 s = 2 + \frac{\sqrt{13}}{\sqrt{2}} = 4.550
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.