Solve for a
a = \frac{7}{4} = 1\frac{3}{4} = 1.75
Share
Copied to clipboard
2a^{2}-7a+7=\frac{7}{8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2a^{2}-7a+7-\frac{7}{8}=\frac{7}{8}-\frac{7}{8}
Subtract \frac{7}{8} from both sides of the equation.
2a^{2}-7a+7-\frac{7}{8}=0
Subtracting \frac{7}{8} from itself leaves 0.
2a^{2}-7a+\frac{49}{8}=0
Subtract \frac{7}{8} from 7.
a=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times \frac{49}{8}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and \frac{49}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times \frac{49}{8}}}{2\times 2}
Square -7.
a=\frac{-\left(-7\right)±\sqrt{49-8\times \frac{49}{8}}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-7\right)±\sqrt{49-49}}{2\times 2}
Multiply -8 times \frac{49}{8}.
a=\frac{-\left(-7\right)±\sqrt{0}}{2\times 2}
Add 49 to -49.
a=-\frac{-7}{2\times 2}
Take the square root of 0.
a=\frac{7}{2\times 2}
The opposite of -7 is 7.
a=\frac{7}{4}
Multiply 2 times 2.
2a^{2}-7a+7=\frac{7}{8}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2a^{2}-7a+7-7=\frac{7}{8}-7
Subtract 7 from both sides of the equation.
2a^{2}-7a=\frac{7}{8}-7
Subtracting 7 from itself leaves 0.
2a^{2}-7a=-\frac{49}{8}
Subtract 7 from \frac{7}{8}.
\frac{2a^{2}-7a}{2}=-\frac{\frac{49}{8}}{2}
Divide both sides by 2.
a^{2}-\frac{7}{2}a=-\frac{\frac{49}{8}}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-\frac{7}{2}a=-\frac{49}{16}
Divide -\frac{49}{8} by 2.
a^{2}-\frac{7}{2}a+\left(-\frac{7}{4}\right)^{2}=-\frac{49}{16}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{7}{2}a+\frac{49}{16}=\frac{-49+49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{7}{2}a+\frac{49}{16}=0
Add -\frac{49}{16} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{7}{4}\right)^{2}=0
Factor a^{2}-\frac{7}{2}a+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{7}{4}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
a-\frac{7}{4}=0 a-\frac{7}{4}=0
Simplify.
a=\frac{7}{4} a=\frac{7}{4}
Add \frac{7}{4} to both sides of the equation.
a=\frac{7}{4}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}