Solve for a
a=-1
a=6
Share
Copied to clipboard
2a^{2}-10a+38=50
Add 29 and 9 to get 38.
2a^{2}-10a+38-50=0
Subtract 50 from both sides.
2a^{2}-10a-12=0
Subtract 50 from 38 to get -12.
a^{2}-5a-6=0
Divide both sides by 2.
a+b=-5 ab=1\left(-6\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as a^{2}+aa+ba-6. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-6 b=1
The solution is the pair that gives sum -5.
\left(a^{2}-6a\right)+\left(a-6\right)
Rewrite a^{2}-5a-6 as \left(a^{2}-6a\right)+\left(a-6\right).
a\left(a-6\right)+a-6
Factor out a in a^{2}-6a.
\left(a-6\right)\left(a+1\right)
Factor out common term a-6 by using distributive property.
a=6 a=-1
To find equation solutions, solve a-6=0 and a+1=0.
2a^{2}-10a+38=50
Add 29 and 9 to get 38.
2a^{2}-10a+38-50=0
Subtract 50 from both sides.
2a^{2}-10a-12=0
Subtract 50 from 38 to get -12.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 2\left(-12\right)}}{2\times 2}
Square -10.
a=\frac{-\left(-10\right)±\sqrt{100-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-10\right)±\sqrt{100+96}}{2\times 2}
Multiply -8 times -12.
a=\frac{-\left(-10\right)±\sqrt{196}}{2\times 2}
Add 100 to 96.
a=\frac{-\left(-10\right)±14}{2\times 2}
Take the square root of 196.
a=\frac{10±14}{2\times 2}
The opposite of -10 is 10.
a=\frac{10±14}{4}
Multiply 2 times 2.
a=\frac{24}{4}
Now solve the equation a=\frac{10±14}{4} when ± is plus. Add 10 to 14.
a=6
Divide 24 by 4.
a=-\frac{4}{4}
Now solve the equation a=\frac{10±14}{4} when ± is minus. Subtract 14 from 10.
a=-1
Divide -4 by 4.
a=6 a=-1
The equation is now solved.
2a^{2}-10a+38=50
Add 29 and 9 to get 38.
2a^{2}-10a=50-38
Subtract 38 from both sides.
2a^{2}-10a=12
Subtract 38 from 50 to get 12.
\frac{2a^{2}-10a}{2}=\frac{12}{2}
Divide both sides by 2.
a^{2}+\left(-\frac{10}{2}\right)a=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-5a=\frac{12}{2}
Divide -10 by 2.
a^{2}-5a=6
Divide 12 by 2.
a^{2}-5a+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-5a+\frac{25}{4}=6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-5a+\frac{25}{4}=\frac{49}{4}
Add 6 to \frac{25}{4}.
\left(a-\frac{5}{2}\right)^{2}=\frac{49}{4}
Factor a^{2}-5a+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
a-\frac{5}{2}=\frac{7}{2} a-\frac{5}{2}=-\frac{7}{2}
Simplify.
a=6 a=-1
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}