Solve for a
a = -\frac{3}{2} = -1\frac{1}{2} = -1.5
a=0
Share
Copied to clipboard
2a^{2}+3a=0
Add 3a to both sides.
a\left(2a+3\right)=0
Factor out a.
a=0 a=-\frac{3}{2}
To find equation solutions, solve a=0 and 2a+3=0.
2a^{2}+3a=0
Add 3a to both sides.
a=\frac{-3±\sqrt{3^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±3}{2\times 2}
Take the square root of 3^{2}.
a=\frac{-3±3}{4}
Multiply 2 times 2.
a=\frac{0}{4}
Now solve the equation a=\frac{-3±3}{4} when ± is plus. Add -3 to 3.
a=0
Divide 0 by 4.
a=-\frac{6}{4}
Now solve the equation a=\frac{-3±3}{4} when ± is minus. Subtract 3 from -3.
a=-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
a=0 a=-\frac{3}{2}
The equation is now solved.
2a^{2}+3a=0
Add 3a to both sides.
\frac{2a^{2}+3a}{2}=\frac{0}{2}
Divide both sides by 2.
a^{2}+\frac{3}{2}a=\frac{0}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}+\frac{3}{2}a=0
Divide 0 by 2.
a^{2}+\frac{3}{2}a+\left(\frac{3}{4}\right)^{2}=\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{3}{2}a+\frac{9}{16}=\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
\left(a+\frac{3}{4}\right)^{2}=\frac{9}{16}
Factor a^{2}+\frac{3}{2}a+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
a+\frac{3}{4}=\frac{3}{4} a+\frac{3}{4}=-\frac{3}{4}
Simplify.
a=0 a=-\frac{3}{2}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}