Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}+8a-13-11a-5
Combine 2a^{2} and 3a^{2} to get 5a^{2}.
5a^{2}-3a-13-5
Combine 8a and -11a to get -3a.
5a^{2}-3a-18
Subtract 5 from -13 to get -18.
factor(5a^{2}+8a-13-11a-5)
Combine 2a^{2} and 3a^{2} to get 5a^{2}.
factor(5a^{2}-3a-13-5)
Combine 8a and -11a to get -3a.
factor(5a^{2}-3a-18)
Subtract 5 from -13 to get -18.
5a^{2}-3a-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-18\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-18\right)}}{2\times 5}
Square -3.
a=\frac{-\left(-3\right)±\sqrt{9-20\left(-18\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-\left(-3\right)±\sqrt{9+360}}{2\times 5}
Multiply -20 times -18.
a=\frac{-\left(-3\right)±\sqrt{369}}{2\times 5}
Add 9 to 360.
a=\frac{-\left(-3\right)±3\sqrt{41}}{2\times 5}
Take the square root of 369.
a=\frac{3±3\sqrt{41}}{2\times 5}
The opposite of -3 is 3.
a=\frac{3±3\sqrt{41}}{10}
Multiply 2 times 5.
a=\frac{3\sqrt{41}+3}{10}
Now solve the equation a=\frac{3±3\sqrt{41}}{10} when ± is plus. Add 3 to 3\sqrt{41}.
a=\frac{3-3\sqrt{41}}{10}
Now solve the equation a=\frac{3±3\sqrt{41}}{10} when ± is minus. Subtract 3\sqrt{41} from 3.
5a^{2}-3a-18=5\left(a-\frac{3\sqrt{41}+3}{10}\right)\left(a-\frac{3-3\sqrt{41}}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+3\sqrt{41}}{10} for x_{1} and \frac{3-3\sqrt{41}}{10} for x_{2}.