Solve for a
a = -\frac{7}{2} = -3\frac{1}{2} = -3.5
a=-\frac{1}{2}=-0.5
Share
Copied to clipboard
2a^{2}+8a+6=\frac{5}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2a^{2}+8a+6-\frac{5}{2}=\frac{5}{2}-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.
2a^{2}+8a+6-\frac{5}{2}=0
Subtracting \frac{5}{2} from itself leaves 0.
2a^{2}+8a+\frac{7}{2}=0
Subtract \frac{5}{2} from 6.
a=\frac{-8±\sqrt{8^{2}-4\times 2\times \frac{7}{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and \frac{7}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8±\sqrt{64-4\times 2\times \frac{7}{2}}}{2\times 2}
Square 8.
a=\frac{-8±\sqrt{64-8\times \frac{7}{2}}}{2\times 2}
Multiply -4 times 2.
a=\frac{-8±\sqrt{64-28}}{2\times 2}
Multiply -8 times \frac{7}{2}.
a=\frac{-8±\sqrt{36}}{2\times 2}
Add 64 to -28.
a=\frac{-8±6}{2\times 2}
Take the square root of 36.
a=\frac{-8±6}{4}
Multiply 2 times 2.
a=-\frac{2}{4}
Now solve the equation a=\frac{-8±6}{4} when ± is plus. Add -8 to 6.
a=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
a=-\frac{14}{4}
Now solve the equation a=\frac{-8±6}{4} when ± is minus. Subtract 6 from -8.
a=-\frac{7}{2}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
a=-\frac{1}{2} a=-\frac{7}{2}
The equation is now solved.
2a^{2}+8a+6=\frac{5}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2a^{2}+8a+6-6=\frac{5}{2}-6
Subtract 6 from both sides of the equation.
2a^{2}+8a=\frac{5}{2}-6
Subtracting 6 from itself leaves 0.
2a^{2}+8a=-\frac{7}{2}
Subtract 6 from \frac{5}{2}.
\frac{2a^{2}+8a}{2}=-\frac{\frac{7}{2}}{2}
Divide both sides by 2.
a^{2}+\frac{8}{2}a=-\frac{\frac{7}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}+4a=-\frac{\frac{7}{2}}{2}
Divide 8 by 2.
a^{2}+4a=-\frac{7}{4}
Divide -\frac{7}{2} by 2.
a^{2}+4a+2^{2}=-\frac{7}{4}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+4a+4=-\frac{7}{4}+4
Square 2.
a^{2}+4a+4=\frac{9}{4}
Add -\frac{7}{4} to 4.
\left(a+2\right)^{2}=\frac{9}{4}
Factor a^{2}+4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
a+2=\frac{3}{2} a+2=-\frac{3}{2}
Simplify.
a=-\frac{1}{2} a=-\frac{7}{2}
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}