Solve for a
a=\sqrt{6}-4\approx -1.550510257
a=-\sqrt{6}-4\approx -6.449489743
Share
Copied to clipboard
2a^{2}+8a+10-a^{2}=0
Subtract a^{2} from both sides.
a^{2}+8a+10=0
Combine 2a^{2} and -a^{2} to get a^{2}.
a=\frac{-8±\sqrt{8^{2}-4\times 10}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8±\sqrt{64-4\times 10}}{2}
Square 8.
a=\frac{-8±\sqrt{64-40}}{2}
Multiply -4 times 10.
a=\frac{-8±\sqrt{24}}{2}
Add 64 to -40.
a=\frac{-8±2\sqrt{6}}{2}
Take the square root of 24.
a=\frac{2\sqrt{6}-8}{2}
Now solve the equation a=\frac{-8±2\sqrt{6}}{2} when ± is plus. Add -8 to 2\sqrt{6}.
a=\sqrt{6}-4
Divide -8+2\sqrt{6} by 2.
a=\frac{-2\sqrt{6}-8}{2}
Now solve the equation a=\frac{-8±2\sqrt{6}}{2} when ± is minus. Subtract 2\sqrt{6} from -8.
a=-\sqrt{6}-4
Divide -8-2\sqrt{6} by 2.
a=\sqrt{6}-4 a=-\sqrt{6}-4
The equation is now solved.
2a^{2}+8a+10-a^{2}=0
Subtract a^{2} from both sides.
a^{2}+8a+10=0
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}+8a=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
a^{2}+8a+4^{2}=-10+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+8a+16=-10+16
Square 4.
a^{2}+8a+16=6
Add -10 to 16.
\left(a+4\right)^{2}=6
Factor a^{2}+8a+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+4\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
a+4=\sqrt{6} a+4=-\sqrt{6}
Simplify.
a=\sqrt{6}-4 a=-\sqrt{6}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}