Solve for a
a = \frac{92}{9} = 10\frac{2}{9} \approx 10.222222222
Share
Copied to clipboard
2a+7\left(-\frac{16}{9}\right)=8
Fraction \frac{-16}{9} can be rewritten as -\frac{16}{9} by extracting the negative sign.
2a+\frac{7\left(-16\right)}{9}=8
Express 7\left(-\frac{16}{9}\right) as a single fraction.
2a+\frac{-112}{9}=8
Multiply 7 and -16 to get -112.
2a-\frac{112}{9}=8
Fraction \frac{-112}{9} can be rewritten as -\frac{112}{9} by extracting the negative sign.
2a=8+\frac{112}{9}
Add \frac{112}{9} to both sides.
2a=\frac{72}{9}+\frac{112}{9}
Convert 8 to fraction \frac{72}{9}.
2a=\frac{72+112}{9}
Since \frac{72}{9} and \frac{112}{9} have the same denominator, add them by adding their numerators.
2a=\frac{184}{9}
Add 72 and 112 to get 184.
a=\frac{\frac{184}{9}}{2}
Divide both sides by 2.
a=\frac{184}{9\times 2}
Express \frac{\frac{184}{9}}{2} as a single fraction.
a=\frac{184}{18}
Multiply 9 and 2 to get 18.
a=\frac{92}{9}
Reduce the fraction \frac{184}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}