Solve for a
a<\frac{1}{2}
Share
Copied to clipboard
2a+3<2a+5-4a
Add -3 and 8 to get 5.
2a+3<-2a+5
Combine 2a and -4a to get -2a.
2a+3+2a<5
Add 2a to both sides.
4a+3<5
Combine 2a and 2a to get 4a.
4a<5-3
Subtract 3 from both sides.
4a<2
Subtract 3 from 5 to get 2.
a<\frac{2}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
a<\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}