Solve for T
T=2
T=0
Share
Copied to clipboard
2T-T^{2}=0
Subtract T^{2} from both sides.
T\left(2-T\right)=0
Factor out T.
T=0 T=2
To find equation solutions, solve T=0 and 2-T=0.
2T-T^{2}=0
Subtract T^{2} from both sides.
-T^{2}+2T=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
T=\frac{-2±\sqrt{2^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
T=\frac{-2±2}{2\left(-1\right)}
Take the square root of 2^{2}.
T=\frac{-2±2}{-2}
Multiply 2 times -1.
T=\frac{0}{-2}
Now solve the equation T=\frac{-2±2}{-2} when ± is plus. Add -2 to 2.
T=0
Divide 0 by -2.
T=-\frac{4}{-2}
Now solve the equation T=\frac{-2±2}{-2} when ± is minus. Subtract 2 from -2.
T=2
Divide -4 by -2.
T=0 T=2
The equation is now solved.
2T-T^{2}=0
Subtract T^{2} from both sides.
-T^{2}+2T=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-T^{2}+2T}{-1}=\frac{0}{-1}
Divide both sides by -1.
T^{2}+\frac{2}{-1}T=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
T^{2}-2T=\frac{0}{-1}
Divide 2 by -1.
T^{2}-2T=0
Divide 0 by -1.
T^{2}-2T+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(T-1\right)^{2}=1
Factor T^{2}-2T+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(T-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
T-1=1 T-1=-1
Simplify.
T=2 T=0
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}