Solve for D
\left\{\begin{matrix}D=\frac{20000000000000000\left(S+2\right)}{10000000000000000E^{2}+9998476951563913E_{0}}\text{, }&E_{0}\neq -\frac{10000000000000000E^{2}}{9998476951563913}\\D\in \mathrm{R}\text{, }&S=-2\text{ and }E_{0}=-\frac{10000000000000000E^{2}}{9998476951563913}\end{matrix}\right.
Share
Copied to clipboard
2 S = 4 + D E ^ {2} - 2 {(4)} + D E 0.9998476951563913
Evaluate trigonometric functions in the problem
2S=4+DE^{2}-8+DE_{0}\times 0.9998476951563913
Multiply 2 and 4 to get 8.
2S=-4+DE^{2}+DE_{0}\times 0.9998476951563913
Subtract 8 from 4 to get -4.
-4+DE^{2}+DE_{0}\times 0.9998476951563913=2S
Swap sides so that all variable terms are on the left hand side.
DE^{2}+DE_{0}\times 0.9998476951563913=2S+4
Add 4 to both sides.
\left(E^{2}+E_{0}\times 0.9998476951563913\right)D=2S+4
Combine all terms containing D.
\left(E^{2}+\frac{9998476951563913E_{0}}{10000000000000000}\right)D=2S+4
The equation is in standard form.
\frac{\left(E^{2}+\frac{9998476951563913E_{0}}{10000000000000000}\right)D}{E^{2}+\frac{9998476951563913E_{0}}{10000000000000000}}=\frac{2S+4}{E^{2}+\frac{9998476951563913E_{0}}{10000000000000000}}
Divide both sides by E^{2}+0.9998476951563913E_{0}.
D=\frac{2S+4}{E^{2}+\frac{9998476951563913E_{0}}{10000000000000000}}
Dividing by E^{2}+0.9998476951563913E_{0} undoes the multiplication by E^{2}+0.9998476951563913E_{0}.
D=\frac{20000000000000000\left(S+2\right)}{10000000000000000E^{2}+9998476951563913E_{0}}
Divide 4+2S by E^{2}+0.9998476951563913E_{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}