Solve for P
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&T=\frac{100\ln(2)}{7}\end{matrix}\right.
Solve for T
\left\{\begin{matrix}\\T=\frac{100\ln(2)}{7}\text{, }&\text{unconditionally}\\T\in \mathrm{R}\text{, }&P=0\end{matrix}\right.
Share
Copied to clipboard
2P-Pe^{0.07T}=0
Subtract Pe^{0.07T} from both sides.
-Pe^{0.07T}+2P=0
Reorder the terms.
\left(-e^{0.07T}+2\right)P=0
Combine all terms containing P.
\left(2-e^{\frac{7T}{100}}\right)P=0
The equation is in standard form.
P=0
Divide 0 by 2-e^{0.07T}.
Pe^{0.07T}=2P
Swap sides so that all variable terms are on the left hand side.
e^{0.07T}=2
Divide both sides by P.
\log(e^{0.07T})=\log(2)
Take the logarithm of both sides of the equation.
0.07T\log(e)=\log(2)
The logarithm of a number raised to a power is the power times the logarithm of the number.
0.07T=\frac{\log(2)}{\log(e)}
Divide both sides by \log(e).
0.07T=\log_{e}\left(2\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
T=\frac{\ln(2)}{0.07}
Divide both sides of the equation by 0.07, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}