Solve for H (complex solution)
\left\{\begin{matrix}H=-\frac{x-4}{s}\text{, }&s\neq 0\\H\in \mathrm{C}\text{, }&x=4\text{ and }s=0\end{matrix}\right.
Solve for s (complex solution)
\left\{\begin{matrix}s=-\frac{x-4}{H}\text{, }&H\neq 0\\s\in \mathrm{C}\text{, }&x=4\text{ and }H=0\end{matrix}\right.
Solve for H
\left\{\begin{matrix}H=-\frac{x-4}{s}\text{, }&s\neq 0\\H\in \mathrm{R}\text{, }&x=4\text{ and }s=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=-\frac{x-4}{H}\text{, }&H\neq 0\\s\in \mathrm{R}\text{, }&x=4\text{ and }H=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2Hs=4\left(-x\right)+8+2x
Use the distributive property to multiply 4 by -x+2.
2Hs=-4x+8+2x
Multiply 4 and -1 to get -4.
2Hs=-2x+8
Combine -4x and 2x to get -2x.
2sH=8-2x
The equation is in standard form.
\frac{2sH}{2s}=\frac{8-2x}{2s}
Divide both sides by 2s.
H=\frac{8-2x}{2s}
Dividing by 2s undoes the multiplication by 2s.
H=\frac{4-x}{s}
Divide -2x+8 by 2s.
2Hs=4\left(-x\right)+8+2x
Use the distributive property to multiply 4 by -x+2.
2Hs=-4x+8+2x
Multiply 4 and -1 to get -4.
2Hs=-2x+8
Combine -4x and 2x to get -2x.
2Hs=8-2x
The equation is in standard form.
\frac{2Hs}{2H}=\frac{8-2x}{2H}
Divide both sides by 2H.
s=\frac{8-2x}{2H}
Dividing by 2H undoes the multiplication by 2H.
s=\frac{4-x}{H}
Divide -2x+8 by 2H.
2Hs=4\left(-x\right)+8+2x
Use the distributive property to multiply 4 by -x+2.
2Hs=-4x+8+2x
Multiply 4 and -1 to get -4.
2Hs=-2x+8
Combine -4x and 2x to get -2x.
2sH=8-2x
The equation is in standard form.
\frac{2sH}{2s}=\frac{8-2x}{2s}
Divide both sides by 2s.
H=\frac{8-2x}{2s}
Dividing by 2s undoes the multiplication by 2s.
H=\frac{4-x}{s}
Divide -2x+8 by 2s.
2Hs=4\left(-x\right)+8+2x
Use the distributive property to multiply 4 by -x+2.
2Hs=-4x+8+2x
Multiply 4 and -1 to get -4.
2Hs=-2x+8
Combine -4x and 2x to get -2x.
2Hs=8-2x
The equation is in standard form.
\frac{2Hs}{2H}=\frac{8-2x}{2H}
Divide both sides by 2H.
s=\frac{8-2x}{2H}
Dividing by 2H undoes the multiplication by 2H.
s=\frac{4-x}{H}
Divide -2x+8 by 2H.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}