Solve for G
\left\{\begin{matrix}G=0\text{, }&r\neq -h\text{ and }r\neq 0\\G\in \mathrm{R}\text{, }&\left(r=-\sqrt{2}h+h\text{ and }h\neq 0\right)\text{ or }\left(r=\sqrt{2}h+h\text{ and }h\neq 0\right)\text{ or }\left(m=0\text{ and }r\neq -h\text{ and }r\neq 0\right)\text{ or }\left(M=0\text{ and }r\neq -h\text{ and }r\neq 0\right)\end{matrix}\right.
Solve for M
\left\{\begin{matrix}M=0\text{, }&r\neq -h\text{ and }r\neq 0\\M\in \mathrm{R}\text{, }&\left(r=-\sqrt{2}h+h\text{ and }h\neq 0\right)\text{ or }\left(r=\sqrt{2}h+h\text{ and }h\neq 0\right)\text{ or }\left(m=0\text{ and }r\neq -h\text{ and }r\neq 0\right)\text{ or }\left(G=0\text{ and }r\neq -h\text{ and }r\neq 0\right)\end{matrix}\right.
Share
Copied to clipboard
2Gr^{2}Mm=G\left(r+h\right)^{2}Mm
Multiply both sides of the equation by r^{2}\left(r+h\right)^{2}, the least common multiple of \left(r+h\right)^{2},r^{2}.
2Gr^{2}Mm=G\left(r^{2}+2rh+h^{2}\right)Mm
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+h\right)^{2}.
2Gr^{2}Mm=\left(Gr^{2}+2Grh+Gh^{2}\right)Mm
Use the distributive property to multiply G by r^{2}+2rh+h^{2}.
2Gr^{2}Mm=\left(Gr^{2}M+2GrhM+Gh^{2}M\right)m
Use the distributive property to multiply Gr^{2}+2Grh+Gh^{2} by M.
2Gr^{2}Mm=Gr^{2}Mm+2GrhMm+Gh^{2}Mm
Use the distributive property to multiply Gr^{2}M+2GrhM+Gh^{2}M by m.
2Gr^{2}Mm-Gr^{2}Mm=2GrhMm+Gh^{2}Mm
Subtract Gr^{2}Mm from both sides.
Gr^{2}Mm=2GrhMm+Gh^{2}Mm
Combine 2Gr^{2}Mm and -Gr^{2}Mm to get Gr^{2}Mm.
Gr^{2}Mm-2GrhMm=Gh^{2}Mm
Subtract 2GrhMm from both sides.
Gr^{2}Mm-2GrhMm-Gh^{2}Mm=0
Subtract Gh^{2}Mm from both sides.
GMmr^{2}-2GMhmr-GMmh^{2}=0
Reorder the terms.
\left(Mmr^{2}-2Mhmr-Mmh^{2}\right)G=0
Combine all terms containing G.
G=0
Divide 0 by Mmr^{2}-2Mhmr-Mmh^{2}.
2Gr^{2}Mm=G\left(r+h\right)^{2}Mm
Multiply both sides of the equation by r^{2}\left(r+h\right)^{2}, the least common multiple of \left(r+h\right)^{2},r^{2}.
2Gr^{2}Mm=G\left(r^{2}+2rh+h^{2}\right)Mm
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+h\right)^{2}.
2Gr^{2}Mm=\left(Gr^{2}+2Grh+Gh^{2}\right)Mm
Use the distributive property to multiply G by r^{2}+2rh+h^{2}.
2Gr^{2}Mm=\left(Gr^{2}M+2GrhM+Gh^{2}M\right)m
Use the distributive property to multiply Gr^{2}+2Grh+Gh^{2} by M.
2Gr^{2}Mm=Gr^{2}Mm+2GrhMm+Gh^{2}Mm
Use the distributive property to multiply Gr^{2}M+2GrhM+Gh^{2}M by m.
2Gr^{2}Mm-Gr^{2}Mm=2GrhMm+Gh^{2}Mm
Subtract Gr^{2}Mm from both sides.
Gr^{2}Mm=2GrhMm+Gh^{2}Mm
Combine 2Gr^{2}Mm and -Gr^{2}Mm to get Gr^{2}Mm.
Gr^{2}Mm-2GrhMm=Gh^{2}Mm
Subtract 2GrhMm from both sides.
Gr^{2}Mm-2GrhMm-Gh^{2}Mm=0
Subtract Gh^{2}Mm from both sides.
GMmr^{2}-2GMhmr-GMmh^{2}=0
Reorder the terms.
\left(Gmr^{2}-2Ghmr-Gmh^{2}\right)M=0
Combine all terms containing M.
M=0
Divide 0 by Gmr^{2}-2Ghmr-Gmh^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}