Solve for x
x=\frac{5y}{6}+\frac{7}{3}
Solve for y
y=\frac{6x-14}{5}
Graph
Share
Copied to clipboard
2-y=\frac{24}{5}-\frac{6}{5}x
Use the distributive property to multiply \frac{6}{5} by 4-x.
\frac{24}{5}-\frac{6}{5}x=2-y
Swap sides so that all variable terms are on the left hand side.
-\frac{6}{5}x=2-y-\frac{24}{5}
Subtract \frac{24}{5} from both sides.
-\frac{6}{5}x=-\frac{14}{5}-y
Subtract \frac{24}{5} from 2 to get -\frac{14}{5}.
-\frac{6}{5}x=-y-\frac{14}{5}
The equation is in standard form.
\frac{-\frac{6}{5}x}{-\frac{6}{5}}=\frac{-y-\frac{14}{5}}{-\frac{6}{5}}
Divide both sides of the equation by -\frac{6}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-y-\frac{14}{5}}{-\frac{6}{5}}
Dividing by -\frac{6}{5} undoes the multiplication by -\frac{6}{5}.
x=\frac{5y}{6}+\frac{7}{3}
Divide -\frac{14}{5}-y by -\frac{6}{5} by multiplying -\frac{14}{5}-y by the reciprocal of -\frac{6}{5}.
2-y=\frac{24}{5}-\frac{6}{5}x
Use the distributive property to multiply \frac{6}{5} by 4-x.
-y=\frac{24}{5}-\frac{6}{5}x-2
Subtract 2 from both sides.
-y=\frac{14}{5}-\frac{6}{5}x
Subtract 2 from \frac{24}{5} to get \frac{14}{5}.
-y=\frac{14-6x}{5}
The equation is in standard form.
\frac{-y}{-1}=\frac{14-6x}{-5}
Divide both sides by -1.
y=\frac{14-6x}{-5}
Dividing by -1 undoes the multiplication by -1.
y=\frac{6x-14}{5}
Divide \frac{14-6x}{5} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}