Solve for a
a=\frac{2}{x}
x\neq 0
Solve for x
x=\frac{2}{a}
a\neq 0
Graph
Share
Copied to clipboard
-ax=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\left(-x\right)a=-2
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=-\frac{2}{-x}
Divide both sides by -x.
a=-\frac{2}{-x}
Dividing by -x undoes the multiplication by -x.
a=\frac{2}{x}
Divide -2 by -x.
-ax=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\left(-a\right)x=-2
The equation is in standard form.
\frac{\left(-a\right)x}{-a}=-\frac{2}{-a}
Divide both sides by -a.
x=-\frac{2}{-a}
Dividing by -a undoes the multiplication by -a.
x=\frac{2}{a}
Divide -2 by -a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}