Solve for a (complex solution)
a=-\frac{i\sqrt{4080\sqrt{259}-65535}}{255}\approx -0-0.044086859i
a=\frac{i\sqrt{4080\sqrt{259}-65535}}{255}\approx 0.044086859i
a = \frac{\sqrt{4080 \sqrt{259} + 65535}}{255} \approx 1.420433006
a = -\frac{\sqrt{4080 \sqrt{259} + 65535}}{255} \approx -1.420433006
Solve for a
a = \frac{\sqrt{4080 \sqrt{259} + 65535}}{255} \approx 1.420433006
a = -\frac{\sqrt{4080 \sqrt{259} + 65535}}{255} \approx -1.420433006
Share
Copied to clipboard
2-a^{2}+\left(\frac{1}{16}\left(\frac{aa}{a}+\frac{1}{a}\right)\right)^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
2-a^{2}+\left(\frac{1}{16}\times \frac{aa+1}{a}\right)^{2}=0
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
2-a^{2}+\left(\frac{1}{16}\times \frac{a^{2}+1}{a}\right)^{2}=0
Do the multiplications in aa+1.
2-a^{2}+\left(\frac{a^{2}+1}{16a}\right)^{2}=0
Multiply \frac{1}{16} times \frac{a^{2}+1}{a} by multiplying numerator times numerator and denominator times denominator.
2-a^{2}+\frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To raise \frac{a^{2}+1}{16a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2-a^{2}\right)\times \left(16a\right)^{2}}{\left(16a\right)^{2}}+\frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 2-a^{2} times \frac{\left(16a\right)^{2}}{\left(16a\right)^{2}}.
\frac{\left(2-a^{2}\right)\times \left(16a\right)^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Since \frac{\left(2-a^{2}\right)\times \left(16a\right)^{2}}{\left(16a\right)^{2}} and \frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}} have the same denominator, add them by adding their numerators.
2-\frac{a^{2}\times \left(16a\right)^{2}}{\left(16a\right)^{2}}+\frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{\left(16a\right)^{2}}{\left(16a\right)^{2}}.
2+\frac{-a^{2}\times \left(16a\right)^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Since -\frac{a^{2}\times \left(16a\right)^{2}}{\left(16a\right)^{2}} and \frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}} have the same denominator, add them by adding their numerators.
2+\frac{-a^{2}\times 16^{2}a^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Expand \left(16a\right)^{2}.
2+\frac{-a^{2}\times 256a^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Calculate 16 to the power of 2 and get 256.
2+\frac{-256a^{2}a^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Multiply -1 and 256 to get -256.
2+\frac{-256a^{4}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2+\frac{-256a^{4}+\left(a^{2}\right)^{2}+2a^{2}+1}{\left(16a\right)^{2}}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a^{2}+1\right)^{2}.
2+\frac{-256a^{4}+a^{4}+2a^{2}+1}{\left(16a\right)^{2}}=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2+\frac{-255a^{4}+2a^{2}+1}{\left(16a\right)^{2}}=0
Combine -256a^{4} and a^{4} to get -255a^{4}.
2+\frac{-255a^{4}+2a^{2}+1}{16^{2}a^{2}}=0
Expand \left(16a\right)^{2}.
2+\frac{-255a^{4}+2a^{2}+1}{256a^{2}}=0
Calculate 16 to the power of 2 and get 256.
\frac{2\times 256a^{2}}{256a^{2}}+\frac{-255a^{4}+2a^{2}+1}{256a^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{256a^{2}}{256a^{2}}.
\frac{2\times 256a^{2}-255a^{4}+2a^{2}+1}{256a^{2}}=0
Since \frac{2\times 256a^{2}}{256a^{2}} and \frac{-255a^{4}+2a^{2}+1}{256a^{2}} have the same denominator, add them by adding their numerators.
\frac{512a^{2}-255a^{4}+2a^{2}+1}{256a^{2}}=0
Do the multiplications in 2\times 256a^{2}-255a^{4}+2a^{2}+1.
\frac{514a^{2}-255a^{4}+1}{256a^{2}}=0
Combine like terms in 512a^{2}-255a^{4}+2a^{2}+1.
514a^{2}-255a^{4}+1=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 256a^{2}.
-255t^{2}+514t+1=0
Substitute t for a^{2}.
t=\frac{-514±\sqrt{514^{2}-4\left(-255\right)\times 1}}{-255\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -255 for a, 514 for b, and 1 for c in the quadratic formula.
t=\frac{-514±32\sqrt{259}}{-510}
Do the calculations.
t=\frac{257-16\sqrt{259}}{255} t=\frac{16\sqrt{259}+257}{255}
Solve the equation t=\frac{-514±32\sqrt{259}}{-510} when ± is plus and when ± is minus.
a=-i\sqrt{-\frac{257-16\sqrt{259}}{255}} a=i\sqrt{-\frac{257-16\sqrt{259}}{255}} a=-\sqrt{\frac{16\sqrt{259}+257}{255}} a=\sqrt{\frac{16\sqrt{259}+257}{255}}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for each t.
2-a^{2}+\left(\frac{1}{16}\left(\frac{aa}{a}+\frac{1}{a}\right)\right)^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
2-a^{2}+\left(\frac{1}{16}\times \frac{aa+1}{a}\right)^{2}=0
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
2-a^{2}+\left(\frac{1}{16}\times \frac{a^{2}+1}{a}\right)^{2}=0
Do the multiplications in aa+1.
2-a^{2}+\left(\frac{a^{2}+1}{16a}\right)^{2}=0
Multiply \frac{1}{16} times \frac{a^{2}+1}{a} by multiplying numerator times numerator and denominator times denominator.
2-a^{2}+\frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To raise \frac{a^{2}+1}{16a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2-a^{2}\right)\times \left(16a\right)^{2}}{\left(16a\right)^{2}}+\frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 2-a^{2} times \frac{\left(16a\right)^{2}}{\left(16a\right)^{2}}.
\frac{\left(2-a^{2}\right)\times \left(16a\right)^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Since \frac{\left(2-a^{2}\right)\times \left(16a\right)^{2}}{\left(16a\right)^{2}} and \frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}} have the same denominator, add them by adding their numerators.
2-\frac{a^{2}\times \left(16a\right)^{2}}{\left(16a\right)^{2}}+\frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{\left(16a\right)^{2}}{\left(16a\right)^{2}}.
2+\frac{-a^{2}\times \left(16a\right)^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Since -\frac{a^{2}\times \left(16a\right)^{2}}{\left(16a\right)^{2}} and \frac{\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}} have the same denominator, add them by adding their numerators.
2+\frac{-a^{2}\times 16^{2}a^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Expand \left(16a\right)^{2}.
2+\frac{-a^{2}\times 256a^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Calculate 16 to the power of 2 and get 256.
2+\frac{-256a^{2}a^{2}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
Multiply -1 and 256 to get -256.
2+\frac{-256a^{4}+\left(a^{2}+1\right)^{2}}{\left(16a\right)^{2}}=0
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2+\frac{-256a^{4}+\left(a^{2}\right)^{2}+2a^{2}+1}{\left(16a\right)^{2}}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a^{2}+1\right)^{2}.
2+\frac{-256a^{4}+a^{4}+2a^{2}+1}{\left(16a\right)^{2}}=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2+\frac{-255a^{4}+2a^{2}+1}{\left(16a\right)^{2}}=0
Combine -256a^{4} and a^{4} to get -255a^{4}.
2+\frac{-255a^{4}+2a^{2}+1}{16^{2}a^{2}}=0
Expand \left(16a\right)^{2}.
2+\frac{-255a^{4}+2a^{2}+1}{256a^{2}}=0
Calculate 16 to the power of 2 and get 256.
\frac{2\times 256a^{2}}{256a^{2}}+\frac{-255a^{4}+2a^{2}+1}{256a^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{256a^{2}}{256a^{2}}.
\frac{2\times 256a^{2}-255a^{4}+2a^{2}+1}{256a^{2}}=0
Since \frac{2\times 256a^{2}}{256a^{2}} and \frac{-255a^{4}+2a^{2}+1}{256a^{2}} have the same denominator, add them by adding their numerators.
\frac{512a^{2}-255a^{4}+2a^{2}+1}{256a^{2}}=0
Do the multiplications in 2\times 256a^{2}-255a^{4}+2a^{2}+1.
\frac{514a^{2}-255a^{4}+1}{256a^{2}}=0
Combine like terms in 512a^{2}-255a^{4}+2a^{2}+1.
514a^{2}-255a^{4}+1=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 256a^{2}.
-255t^{2}+514t+1=0
Substitute t for a^{2}.
t=\frac{-514±\sqrt{514^{2}-4\left(-255\right)\times 1}}{-255\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -255 for a, 514 for b, and 1 for c in the quadratic formula.
t=\frac{-514±32\sqrt{259}}{-510}
Do the calculations.
t=\frac{257-16\sqrt{259}}{255} t=\frac{16\sqrt{259}+257}{255}
Solve the equation t=\frac{-514±32\sqrt{259}}{-510} when ± is plus and when ± is minus.
a=\sqrt{\frac{16\sqrt{259}+257}{255}} a=-\sqrt{\frac{16\sqrt{259}+257}{255}}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}