Solve for P
\left\{\begin{matrix}P=\frac{2\left(1-2hk\right)}{q}\text{, }&q\neq 0\\P\in \mathrm{R}\text{, }&h=\frac{1}{2k}\text{ and }k\neq 0\text{ and }q=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=-\frac{Pq-2}{4k}\text{, }&k\neq 0\\h\in \mathrm{R}\text{, }&P=\frac{2}{q}\text{ and }q\neq 0\text{ and }k=0\end{matrix}\right.
Share
Copied to clipboard
-Pq=4hk-2
Subtract 2 from both sides.
\left(-q\right)P=4hk-2
The equation is in standard form.
\frac{\left(-q\right)P}{-q}=\frac{4hk-2}{-q}
Divide both sides by -q.
P=\frac{4hk-2}{-q}
Dividing by -q undoes the multiplication by -q.
P=-\frac{2\left(2hk-1\right)}{q}
Divide 4hk-2 by -q.
4hk=2-Pq
Swap sides so that all variable terms are on the left hand side.
4kh=2-Pq
The equation is in standard form.
\frac{4kh}{4k}=\frac{2-Pq}{4k}
Divide both sides by 4k.
h=\frac{2-Pq}{4k}
Dividing by 4k undoes the multiplication by 4k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}