2 - 5 i ( 7 - i ) - ( 3 - i ) ( 3 + i
Evaluate
-13-35i
Real Part
-13
Share
Copied to clipboard
2-\left(5i\times 7+5\left(-1\right)i^{2}\right)-\left(3-i\right)\left(3+i\right)
Multiply 5i times 7-i.
2-\left(5i\times 7+5\left(-1\right)\left(-1\right)\right)-\left(3-i\right)\left(3+i\right)
By definition, i^{2} is -1.
2-\left(5+35i\right)-\left(3-i\right)\left(3+i\right)
Do the multiplications in 5i\times 7+5\left(-1\right)\left(-1\right). Reorder the terms.
2-5+35i-\left(3-i\right)\left(3+i\right)
Subtract 5+35i from 2 by subtracting corresponding real and imaginary parts.
-3-35i-\left(3-i\right)\left(3+i\right)
Subtract 5 from 2.
-3-35i-\left(3\times 3+3i-i\times 3-i^{2}\right)
Multiply complex numbers 3-i and 3+i like you multiply binomials.
-3-35i-\left(3\times 3+3i-i\times 3-\left(-1\right)\right)
By definition, i^{2} is -1.
-3-35i-\left(9+3i-3i+1\right)
Do the multiplications in 3\times 3+3i-i\times 3-\left(-1\right).
-3-35i-\left(9+1+\left(3-3\right)i\right)
Combine the real and imaginary parts in 9+3i-3i+1.
-3-35i-10
Do the additions in 9+1+\left(3-3\right)i.
-3-10-35i
Subtract 10 from -3-35i by subtracting corresponding real and imaginary parts.
-13-35i
Subtract 10 from -3 to get -13.
Re(2-\left(5i\times 7+5\left(-1\right)i^{2}\right)-\left(3-i\right)\left(3+i\right))
Multiply 5i times 7-i.
Re(2-\left(5i\times 7+5\left(-1\right)\left(-1\right)\right)-\left(3-i\right)\left(3+i\right))
By definition, i^{2} is -1.
Re(2-\left(5+35i\right)-\left(3-i\right)\left(3+i\right))
Do the multiplications in 5i\times 7+5\left(-1\right)\left(-1\right). Reorder the terms.
Re(2-5+35i-\left(3-i\right)\left(3+i\right))
Subtract 5+35i from 2 by subtracting corresponding real and imaginary parts.
Re(-3-35i-\left(3-i\right)\left(3+i\right))
Subtract 5 from 2.
Re(-3-35i-\left(3\times 3+3i-i\times 3-i^{2}\right))
Multiply complex numbers 3-i and 3+i like you multiply binomials.
Re(-3-35i-\left(3\times 3+3i-i\times 3-\left(-1\right)\right))
By definition, i^{2} is -1.
Re(-3-35i-\left(9+3i-3i+1\right))
Do the multiplications in 3\times 3+3i-i\times 3-\left(-1\right).
Re(-3-35i-\left(9+1+\left(3-3\right)i\right))
Combine the real and imaginary parts in 9+3i-3i+1.
Re(-3-35i-10)
Do the additions in 9+1+\left(3-3\right)i.
Re(-3-10-35i)
Subtract 10 from -3-35i by subtracting corresponding real and imaginary parts.
Re(-13-35i)
Subtract 10 from -3 to get -13.
-13
The real part of -13-35i is -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}