Verify
false
Share
Copied to clipboard
2-\frac{4+3}{4}=\frac{3}{4}-\frac{1\times 4+3}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Multiply 1 and 4 to get 4.
2-\frac{7}{4}=\frac{3}{4}-\frac{1\times 4+3}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Add 4 and 3 to get 7.
\frac{8}{4}-\frac{7}{4}=\frac{3}{4}-\frac{1\times 4+3}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Convert 2 to fraction \frac{8}{4}.
\frac{8-7}{4}=\frac{3}{4}-\frac{1\times 4+3}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Since \frac{8}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}=\frac{3}{4}-\frac{1\times 4+3}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Subtract 7 from 8 to get 1.
\frac{1}{4}=\frac{3}{4}-\frac{4+3}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Multiply 1 and 4 to get 4.
\frac{1}{4}=\frac{3}{4}-\frac{7}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Add 4 and 3 to get 7.
\frac{1}{4}=\frac{3-7}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Since \frac{3}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}=\frac{-4}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Subtract 7 from 3 to get -4.
\frac{1}{4}=-1\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Divide -4 by 4 to get -1.
\frac{1}{4}=-\frac{4}{4}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Convert -1 to fraction -\frac{4}{4}.
\text{false}\text{ and }\frac{3}{4}-\frac{1\times 4+3}{4}=\frac{1\times 4+0}{4}
Compare \frac{1}{4} and -\frac{4}{4}.
\text{false}\text{ and }\frac{3}{4}-\frac{4+3}{4}=\frac{1\times 4+0}{4}
Multiply 1 and 4 to get 4.
\text{false}\text{ and }\frac{3}{4}-\frac{7}{4}=\frac{1\times 4+0}{4}
Add 4 and 3 to get 7.
\text{false}\text{ and }\frac{3-7}{4}=\frac{1\times 4+0}{4}
Since \frac{3}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }\frac{-4}{4}=\frac{1\times 4+0}{4}
Subtract 7 from 3 to get -4.
\text{false}\text{ and }-1=\frac{1\times 4+0}{4}
Divide -4 by 4 to get -1.
\text{false}\text{ and }-1=\frac{4+0}{4}
Multiply 1 and 4 to get 4.
\text{false}\text{ and }-1=\frac{4}{4}
Add 4 and 0 to get 4.
\text{false}\text{ and }-1=1
Divide 4 by 4 to get 1.
\text{false}\text{ and }\text{false}
Compare -1 and 1.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}