Evaluate
23m^{2}-26m-7
Expand
23m^{2}-26m-7
Share
Copied to clipboard
2-\left(m^{2}-m+7m-7\right)+4\left(2m+1\right)\left(3m-4\right)
Apply the distributive property by multiplying each term of m+7 by each term of m-1.
2-\left(m^{2}+6m-7\right)+4\left(2m+1\right)\left(3m-4\right)
Combine -m and 7m to get 6m.
2-m^{2}-6m-\left(-7\right)+4\left(2m+1\right)\left(3m-4\right)
To find the opposite of m^{2}+6m-7, find the opposite of each term.
2-m^{2}-6m+7+4\left(2m+1\right)\left(3m-4\right)
The opposite of -7 is 7.
9-m^{2}-6m+4\left(2m+1\right)\left(3m-4\right)
Add 2 and 7 to get 9.
9-m^{2}-6m+\left(8m+4\right)\left(3m-4\right)
Use the distributive property to multiply 4 by 2m+1.
9-m^{2}-6m+24m^{2}-32m+12m-16
Apply the distributive property by multiplying each term of 8m+4 by each term of 3m-4.
9-m^{2}-6m+24m^{2}-20m-16
Combine -32m and 12m to get -20m.
9+23m^{2}-6m-20m-16
Combine -m^{2} and 24m^{2} to get 23m^{2}.
9+23m^{2}-26m-16
Combine -6m and -20m to get -26m.
-7+23m^{2}-26m
Subtract 16 from 9 to get -7.
2-\left(m^{2}-m+7m-7\right)+4\left(2m+1\right)\left(3m-4\right)
Apply the distributive property by multiplying each term of m+7 by each term of m-1.
2-\left(m^{2}+6m-7\right)+4\left(2m+1\right)\left(3m-4\right)
Combine -m and 7m to get 6m.
2-m^{2}-6m-\left(-7\right)+4\left(2m+1\right)\left(3m-4\right)
To find the opposite of m^{2}+6m-7, find the opposite of each term.
2-m^{2}-6m+7+4\left(2m+1\right)\left(3m-4\right)
The opposite of -7 is 7.
9-m^{2}-6m+4\left(2m+1\right)\left(3m-4\right)
Add 2 and 7 to get 9.
9-m^{2}-6m+\left(8m+4\right)\left(3m-4\right)
Use the distributive property to multiply 4 by 2m+1.
9-m^{2}-6m+24m^{2}-32m+12m-16
Apply the distributive property by multiplying each term of 8m+4 by each term of 3m-4.
9-m^{2}-6m+24m^{2}-20m-16
Combine -32m and 12m to get -20m.
9+23m^{2}-6m-20m-16
Combine -m^{2} and 24m^{2} to get 23m^{2}.
9+23m^{2}-26m-16
Combine -6m and -20m to get -26m.
-7+23m^{2}-26m
Subtract 16 from 9 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}