Solve for x
x = \frac{9 \sqrt{3} + 1}{11} \approx 1.50804157
Graph
Share
Copied to clipboard
2-\left(x+2\sqrt{3}x\right)+\sqrt{3}+3=0
Use the distributive property to multiply 1+2\sqrt{3} by x.
2-x-2\sqrt{3}x+\sqrt{3}+3=0
To find the opposite of x+2\sqrt{3}x, find the opposite of each term.
5-x-2\sqrt{3}x+\sqrt{3}=0
Add 2 and 3 to get 5.
-x-2\sqrt{3}x+\sqrt{3}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-x-2\sqrt{3}x=-5-\sqrt{3}
Subtract \sqrt{3} from both sides.
\left(-1-2\sqrt{3}\right)x=-5-\sqrt{3}
Combine all terms containing x.
\left(-2\sqrt{3}-1\right)x=-\sqrt{3}-5
The equation is in standard form.
\frac{\left(-2\sqrt{3}-1\right)x}{-2\sqrt{3}-1}=\frac{-\sqrt{3}-5}{-2\sqrt{3}-1}
Divide both sides by -1-2\sqrt{3}.
x=\frac{-\sqrt{3}-5}{-2\sqrt{3}-1}
Dividing by -1-2\sqrt{3} undoes the multiplication by -1-2\sqrt{3}.
x=\frac{9\sqrt{3}+1}{11}
Divide -5-\sqrt{3} by -1-2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}