Evaluate
2-2c
Expand
2-2c
Share
Copied to clipboard
2-\left(-a\right)-\left(-b\right)-c-\left(b+a\right)-c
To find the opposite of -a-b+c, find the opposite of each term.
2-\left(-a\right)+b-c-\left(b+a\right)-c
The opposite of -b is b.
2-\left(-a\right)+b-c-b-a-c
To find the opposite of b+a, find the opposite of each term.
2-\left(-a\right)-c-a-c
Combine b and -b to get 0.
2-\left(-a\right)-2c-a
Combine -c and -c to get -2c.
2+a-2c-a
Multiply -1 and -1 to get 1.
2-2c
Combine a and -a to get 0.
2-\left(-a\right)-\left(-b\right)-c-\left(b+a\right)-c
To find the opposite of -a-b+c, find the opposite of each term.
2-\left(-a\right)+b-c-\left(b+a\right)-c
The opposite of -b is b.
2-\left(-a\right)+b-c-b-a-c
To find the opposite of b+a, find the opposite of each term.
2-\left(-a\right)-c-a-c
Combine b and -b to get 0.
2-\left(-a\right)-2c-a
Combine -c and -c to get -2c.
2+a-2c-a
Multiply -1 and -1 to get 1.
2-2c
Combine a and -a to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}