Verify
false
Share
Copied to clipboard
2-\frac{49}{16}-\frac{5}{8}=-\frac{16}{27}
Calculate -\frac{7}{4} to the power of 2 and get \frac{49}{16}.
\frac{32}{16}-\frac{49}{16}-\frac{5}{8}=-\frac{16}{27}
Convert 2 to fraction \frac{32}{16}.
\frac{32-49}{16}-\frac{5}{8}=-\frac{16}{27}
Since \frac{32}{16} and \frac{49}{16} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{16}-\frac{5}{8}=-\frac{16}{27}
Subtract 49 from 32 to get -17.
-\frac{17}{16}-\frac{10}{16}=-\frac{16}{27}
Least common multiple of 16 and 8 is 16. Convert -\frac{17}{16} and \frac{5}{8} to fractions with denominator 16.
\frac{-17-10}{16}=-\frac{16}{27}
Since -\frac{17}{16} and \frac{10}{16} have the same denominator, subtract them by subtracting their numerators.
-\frac{27}{16}=-\frac{16}{27}
Subtract 10 from -17 to get -27.
-\frac{729}{432}=-\frac{256}{432}
Least common multiple of 16 and 27 is 432. Convert -\frac{27}{16} and -\frac{16}{27} to fractions with denominator 432.
\text{false}
Compare -\frac{729}{432} and -\frac{256}{432}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}