Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2-\left(\left(\sqrt{6}\right)^{2}+12\sqrt{6}\sqrt{7}+36\left(\sqrt{7}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+6\sqrt{7}\right)^{2}.
2-\left(6+12\sqrt{6}\sqrt{7}+36\left(\sqrt{7}\right)^{2}\right)
The square of \sqrt{6} is 6.
2-\left(6+12\sqrt{42}+36\left(\sqrt{7}\right)^{2}\right)
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
2-\left(6+12\sqrt{42}+36\times 7\right)
The square of \sqrt{7} is 7.
2-\left(6+12\sqrt{42}+252\right)
Multiply 36 and 7 to get 252.
2-\left(258+12\sqrt{42}\right)
Add 6 and 252 to get 258.
2-258-12\sqrt{42}
To find the opposite of 258+12\sqrt{42}, find the opposite of each term.
-256-12\sqrt{42}
Subtract 258 from 2 to get -256.
2-\left(\left(\sqrt{6}\right)^{2}+12\sqrt{6}\sqrt{7}+36\left(\sqrt{7}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+6\sqrt{7}\right)^{2}.
2-\left(6+12\sqrt{6}\sqrt{7}+36\left(\sqrt{7}\right)^{2}\right)
The square of \sqrt{6} is 6.
2-\left(6+12\sqrt{42}+36\left(\sqrt{7}\right)^{2}\right)
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
2-\left(6+12\sqrt{42}+36\times 7\right)
The square of \sqrt{7} is 7.
2-\left(6+12\sqrt{42}+252\right)
Multiply 36 and 7 to get 252.
2-\left(258+12\sqrt{42}\right)
Add 6 and 252 to get 258.
2-258-12\sqrt{42}
To find the opposite of 258+12\sqrt{42}, find the opposite of each term.
-256-12\sqrt{42}
Subtract 258 from 2 to get -256.