Solve for x
x=\frac{y+4}{6}
Solve for y
y=6x-4
Graph
Share
Copied to clipboard
40-2\left(y+2x\right)+4x=48\left(1-\frac{x}{4}\right)
Multiply both sides of the equation by 20, the least common multiple of 10,5,4.
40-2y-4x+4x=48\left(1-\frac{x}{4}\right)
Use the distributive property to multiply -2 by y+2x.
40-2y=48\left(1-\frac{x}{4}\right)
Combine -4x and 4x to get 0.
40-2y=48+48\left(-\frac{x}{4}\right)
Use the distributive property to multiply 48 by 1-\frac{x}{4}.
40-2y=48-12x
Cancel out 4, the greatest common factor in 48 and 4.
48-12x=40-2y
Swap sides so that all variable terms are on the left hand side.
-12x=40-2y-48
Subtract 48 from both sides.
-12x=-8-2y
Subtract 48 from 40 to get -8.
-12x=-2y-8
The equation is in standard form.
\frac{-12x}{-12}=\frac{-2y-8}{-12}
Divide both sides by -12.
x=\frac{-2y-8}{-12}
Dividing by -12 undoes the multiplication by -12.
x=\frac{y}{6}+\frac{2}{3}
Divide -8-2y by -12.
40-2\left(y+2x\right)+4x=48\left(1-\frac{x}{4}\right)
Multiply both sides of the equation by 20, the least common multiple of 10,5,4.
40-2y-4x+4x=48\left(1-\frac{x}{4}\right)
Use the distributive property to multiply -2 by y+2x.
40-2y=48\left(1-\frac{x}{4}\right)
Combine -4x and 4x to get 0.
40-2y=48+48\left(-\frac{x}{4}\right)
Use the distributive property to multiply 48 by 1-\frac{x}{4}.
40-2y=48-12x
Cancel out 4, the greatest common factor in 48 and 4.
-2y=48-12x-40
Subtract 40 from both sides.
-2y=8-12x
Subtract 40 from 48 to get 8.
\frac{-2y}{-2}=\frac{8-12x}{-2}
Divide both sides by -2.
y=\frac{8-12x}{-2}
Dividing by -2 undoes the multiplication by -2.
y=6x-4
Divide 8-12x by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}