Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\left(x-2\right)}{x-2}-\frac{x+1}{x-2}-\frac{x-4}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-2}{x-2}.
\frac{2\left(x-2\right)-\left(x+1\right)}{x-2}-\frac{x-4}{x+2}
Since \frac{2\left(x-2\right)}{x-2} and \frac{x+1}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-4-x-1}{x-2}-\frac{x-4}{x+2}
Do the multiplications in 2\left(x-2\right)-\left(x+1\right).
\frac{x-5}{x-2}-\frac{x-4}{x+2}
Combine like terms in 2x-4-x-1.
\frac{\left(x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x-5}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x-4}{x+2} times \frac{x-2}{x-2}.
\frac{\left(x-5\right)\left(x+2\right)-\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{\left(x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-5x-10-x^{2}+2x+4x-8}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(x-5\right)\left(x+2\right)-\left(x-4\right)\left(x-2\right).
\frac{3x-18}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}+2x-5x-10-x^{2}+2x+4x-8.
\frac{3x-18}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{2\left(x-2\right)}{x-2}-\frac{x+1}{x-2}-\frac{x-4}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-2}{x-2}.
\frac{2\left(x-2\right)-\left(x+1\right)}{x-2}-\frac{x-4}{x+2}
Since \frac{2\left(x-2\right)}{x-2} and \frac{x+1}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-4-x-1}{x-2}-\frac{x-4}{x+2}
Do the multiplications in 2\left(x-2\right)-\left(x+1\right).
\frac{x-5}{x-2}-\frac{x-4}{x+2}
Combine like terms in 2x-4-x-1.
\frac{\left(x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x-5}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x-4}{x+2} times \frac{x-2}{x-2}.
\frac{\left(x-5\right)\left(x+2\right)-\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{\left(x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-5x-10-x^{2}+2x+4x-8}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(x-5\right)\left(x+2\right)-\left(x-4\right)\left(x-2\right).
\frac{3x-18}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}+2x-5x-10-x^{2}+2x+4x-8.
\frac{3x-18}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).