Evaluate
-\frac{25d}{12c}+\frac{17}{12}
Expand
-\frac{25d}{12c}+\frac{17}{12}
Share
Copied to clipboard
\frac{2\times 6c}{6c}-\frac{8c+5d}{6c}+\frac{3c-5d}{4c}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{6c}{6c}.
\frac{2\times 6c-\left(8c+5d\right)}{6c}+\frac{3c-5d}{4c}
Since \frac{2\times 6c}{6c} and \frac{8c+5d}{6c} have the same denominator, subtract them by subtracting their numerators.
\frac{12c-8c-5d}{6c}+\frac{3c-5d}{4c}
Do the multiplications in 2\times 6c-\left(8c+5d\right).
\frac{4c-5d}{6c}+\frac{3c-5d}{4c}
Combine like terms in 12c-8c-5d.
\frac{2\left(4c-5d\right)}{12c}+\frac{3\left(3c-5d\right)}{12c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6c and 4c is 12c. Multiply \frac{4c-5d}{6c} times \frac{2}{2}. Multiply \frac{3c-5d}{4c} times \frac{3}{3}.
\frac{2\left(4c-5d\right)+3\left(3c-5d\right)}{12c}
Since \frac{2\left(4c-5d\right)}{12c} and \frac{3\left(3c-5d\right)}{12c} have the same denominator, add them by adding their numerators.
\frac{8c-10d+9c-15d}{12c}
Do the multiplications in 2\left(4c-5d\right)+3\left(3c-5d\right).
\frac{17c-25d}{12c}
Combine like terms in 8c-10d+9c-15d.
\frac{2\times 6c}{6c}-\frac{8c+5d}{6c}+\frac{3c-5d}{4c}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{6c}{6c}.
\frac{2\times 6c-\left(8c+5d\right)}{6c}+\frac{3c-5d}{4c}
Since \frac{2\times 6c}{6c} and \frac{8c+5d}{6c} have the same denominator, subtract them by subtracting their numerators.
\frac{12c-8c-5d}{6c}+\frac{3c-5d}{4c}
Do the multiplications in 2\times 6c-\left(8c+5d\right).
\frac{4c-5d}{6c}+\frac{3c-5d}{4c}
Combine like terms in 12c-8c-5d.
\frac{2\left(4c-5d\right)}{12c}+\frac{3\left(3c-5d\right)}{12c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6c and 4c is 12c. Multiply \frac{4c-5d}{6c} times \frac{2}{2}. Multiply \frac{3c-5d}{4c} times \frac{3}{3}.
\frac{2\left(4c-5d\right)+3\left(3c-5d\right)}{12c}
Since \frac{2\left(4c-5d\right)}{12c} and \frac{3\left(3c-5d\right)}{12c} have the same denominator, add them by adding their numerators.
\frac{8c-10d+9c-15d}{12c}
Do the multiplications in 2\left(4c-5d\right)+3\left(3c-5d\right).
\frac{17c-25d}{12c}
Combine like terms in 8c-10d+9c-15d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}