Solve for w
w\leq \frac{15}{34}
Share
Copied to clipboard
2-\frac{8}{9}w-w\geq \frac{7}{6}
Subtract w from both sides.
2-\frac{17}{9}w\geq \frac{7}{6}
Combine -\frac{8}{9}w and -w to get -\frac{17}{9}w.
-\frac{17}{9}w\geq \frac{7}{6}-2
Subtract 2 from both sides.
-\frac{17}{9}w\geq \frac{7}{6}-\frac{12}{6}
Convert 2 to fraction \frac{12}{6}.
-\frac{17}{9}w\geq \frac{7-12}{6}
Since \frac{7}{6} and \frac{12}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{9}w\geq -\frac{5}{6}
Subtract 12 from 7 to get -5.
w\leq -\frac{5}{6}\left(-\frac{9}{17}\right)
Multiply both sides by -\frac{9}{17}, the reciprocal of -\frac{17}{9}. Since -\frac{17}{9} is negative, the inequality direction is changed.
w\leq \frac{-5\left(-9\right)}{6\times 17}
Multiply -\frac{5}{6} times -\frac{9}{17} by multiplying numerator times numerator and denominator times denominator.
w\leq \frac{45}{102}
Do the multiplications in the fraction \frac{-5\left(-9\right)}{6\times 17}.
w\leq \frac{15}{34}
Reduce the fraction \frac{45}{102} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}