Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
40-2\left(5+2x\right)+28x=48\left(1-\frac{x}{4}\right)
Multiply both sides of the equation by 20, the least common multiple of 10,5,4.
40-10-4x+28x=48\left(1-\frac{x}{4}\right)
Use the distributive property to multiply -2 by 5+2x.
30-4x+28x=48\left(1-\frac{x}{4}\right)
Subtract 10 from 40 to get 30.
30+24x=48\left(1-\frac{x}{4}\right)
Combine -4x and 28x to get 24x.
30+24x=48+48\left(-\frac{x}{4}\right)
Use the distributive property to multiply 48 by 1-\frac{x}{4}.
30+24x=48-12x
Cancel out 4, the greatest common factor in 48 and 4.
30+24x+12x=48
Add 12x to both sides.
30+36x=48
Combine 24x and 12x to get 36x.
36x=48-30
Subtract 30 from both sides.
36x=18
Subtract 30 from 48 to get 18.
x=\frac{18}{36}
Divide both sides by 36.
x=\frac{1}{2}
Reduce the fraction \frac{18}{36} to lowest terms by extracting and canceling out 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}