Solve for x
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
x\left(x+1\right)\times 2-\left(4x+3\right)=x\times 2x-\left(x+1\right)\times 5
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+1\right), the least common multiple of x+x^{2},x+1,x.
\left(x^{2}+x\right)\times 2-\left(4x+3\right)=x\times 2x-\left(x+1\right)\times 5
Use the distributive property to multiply x by x+1.
2x^{2}+2x-\left(4x+3\right)=x\times 2x-\left(x+1\right)\times 5
Use the distributive property to multiply x^{2}+x by 2.
2x^{2}+2x-4x-3=x\times 2x-\left(x+1\right)\times 5
To find the opposite of 4x+3, find the opposite of each term.
2x^{2}-2x-3=x\times 2x-\left(x+1\right)\times 5
Combine 2x and -4x to get -2x.
2x^{2}-2x-3=x^{2}\times 2-\left(x+1\right)\times 5
Multiply x and x to get x^{2}.
2x^{2}-2x-3=x^{2}\times 2-\left(5x+5\right)
Use the distributive property to multiply x+1 by 5.
2x^{2}-2x-3=x^{2}\times 2-5x-5
To find the opposite of 5x+5, find the opposite of each term.
2x^{2}-2x-3-x^{2}\times 2=-5x-5
Subtract x^{2}\times 2 from both sides.
-2x-3=-5x-5
Combine 2x^{2} and -x^{2}\times 2 to get 0.
-2x-3+5x=-5
Add 5x to both sides.
3x-3=-5
Combine -2x and 5x to get 3x.
3x=-5+3
Add 3 to both sides.
3x=-2
Add -5 and 3 to get -2.
x=\frac{-2}{3}
Divide both sides by 3.
x=-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}