Solve for x
x = \frac{31}{3} = 10\frac{1}{3} \approx 10.333333333
Graph
Share
Copied to clipboard
10-\left(3x-1\right)=-20
Multiply both sides of the equation by 5.
10-3x-\left(-1\right)=-20
To find the opposite of 3x-1, find the opposite of each term.
10-3x+1=-20
The opposite of -1 is 1.
11-3x=-20
Add 10 and 1 to get 11.
-3x=-20-11
Subtract 11 from both sides.
-3x=-31
Subtract 11 from -20 to get -31.
x=\frac{-31}{-3}
Divide both sides by -3.
x=\frac{31}{3}
Fraction \frac{-31}{-3} can be simplified to \frac{31}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}