Evaluate
\frac{45}{26}\approx 1.730769231
Factor
\frac{3 ^ {2} \cdot 5}{2 \cdot 13} = 1\frac{19}{26} = 1.7307692307692308
Share
Copied to clipboard
2-\frac{3-5\times \frac{2}{3}-\frac{\frac{1}{3}}{\frac{2}{5}}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Divide 5 by \frac{3}{2} by multiplying 5 by the reciprocal of \frac{3}{2}.
2-\frac{3-\frac{5\times 2}{3}-\frac{\frac{1}{3}}{\frac{2}{5}}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Express 5\times \frac{2}{3} as a single fraction.
2-\frac{3-\frac{10}{3}-\frac{\frac{1}{3}}{\frac{2}{5}}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Multiply 5 and 2 to get 10.
2-\frac{\frac{9}{3}-\frac{10}{3}-\frac{\frac{1}{3}}{\frac{2}{5}}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Convert 3 to fraction \frac{9}{3}.
2-\frac{\frac{9-10}{3}-\frac{\frac{1}{3}}{\frac{2}{5}}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Since \frac{9}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
2-\frac{-\frac{1}{3}-\frac{\frac{1}{3}}{\frac{2}{5}}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Subtract 10 from 9 to get -1.
2-\frac{-\frac{1}{3}-\frac{1}{3}\times \frac{5}{2}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Divide \frac{1}{3} by \frac{2}{5} by multiplying \frac{1}{3} by the reciprocal of \frac{2}{5}.
2-\frac{-\frac{1}{3}-\frac{1\times 5}{3\times 2}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Multiply \frac{1}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
2-\frac{-\frac{1}{3}-\frac{5}{6}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Do the multiplications in the fraction \frac{1\times 5}{3\times 2}.
2-\frac{-\frac{2}{6}-\frac{5}{6}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Least common multiple of 3 and 6 is 6. Convert -\frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
2-\frac{\frac{-2-5}{6}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Since -\frac{2}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
2-\frac{-\frac{7}{6}}{\frac{2}{3}-\frac{\frac{1}{3}}{\frac{1}{15}}}
Subtract 5 from -2 to get -7.
2-\frac{-\frac{7}{6}}{\frac{2}{3}-\frac{1}{3}\times 15}
Divide \frac{1}{3} by \frac{1}{15} by multiplying \frac{1}{3} by the reciprocal of \frac{1}{15}.
2-\frac{-\frac{7}{6}}{\frac{2}{3}-\frac{15}{3}}
Multiply \frac{1}{3} and 15 to get \frac{15}{3}.
2-\frac{-\frac{7}{6}}{\frac{2-15}{3}}
Since \frac{2}{3} and \frac{15}{3} have the same denominator, subtract them by subtracting their numerators.
2-\frac{-\frac{7}{6}}{-\frac{13}{3}}
Subtract 15 from 2 to get -13.
2-\left(-\frac{7}{6}\left(-\frac{3}{13}\right)\right)
Divide -\frac{7}{6} by -\frac{13}{3} by multiplying -\frac{7}{6} by the reciprocal of -\frac{13}{3}.
2-\frac{-7\left(-3\right)}{6\times 13}
Multiply -\frac{7}{6} times -\frac{3}{13} by multiplying numerator times numerator and denominator times denominator.
2-\frac{21}{78}
Do the multiplications in the fraction \frac{-7\left(-3\right)}{6\times 13}.
2-\frac{7}{26}
Reduce the fraction \frac{21}{78} to lowest terms by extracting and canceling out 3.
\frac{52}{26}-\frac{7}{26}
Convert 2 to fraction \frac{52}{26}.
\frac{52-7}{26}
Since \frac{52}{26} and \frac{7}{26} have the same denominator, subtract them by subtracting their numerators.
\frac{45}{26}
Subtract 7 from 52 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}