Evaluate
\frac{125}{124}\approx 1.008064516
Factor
\frac{5 ^ {3}}{2 ^ {2} \cdot 31} = 1\frac{1}{124} = 1.0080645161290323
Share
Copied to clipboard
2-\frac{3}{4-\frac{5}{\frac{48}{8}-\frac{7}{8}}}
Convert 6 to fraction \frac{48}{8}.
2-\frac{3}{4-\frac{5}{\frac{48-7}{8}}}
Since \frac{48}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
2-\frac{3}{4-\frac{5}{\frac{41}{8}}}
Subtract 7 from 48 to get 41.
2-\frac{3}{4-5\times \frac{8}{41}}
Divide 5 by \frac{41}{8} by multiplying 5 by the reciprocal of \frac{41}{8}.
2-\frac{3}{4-\frac{5\times 8}{41}}
Express 5\times \frac{8}{41} as a single fraction.
2-\frac{3}{4-\frac{40}{41}}
Multiply 5 and 8 to get 40.
2-\frac{3}{\frac{164}{41}-\frac{40}{41}}
Convert 4 to fraction \frac{164}{41}.
2-\frac{3}{\frac{164-40}{41}}
Since \frac{164}{41} and \frac{40}{41} have the same denominator, subtract them by subtracting their numerators.
2-\frac{3}{\frac{124}{41}}
Subtract 40 from 164 to get 124.
2-3\times \frac{41}{124}
Divide 3 by \frac{124}{41} by multiplying 3 by the reciprocal of \frac{124}{41}.
2-\frac{3\times 41}{124}
Express 3\times \frac{41}{124} as a single fraction.
2-\frac{123}{124}
Multiply 3 and 41 to get 123.
\frac{248}{124}-\frac{123}{124}
Convert 2 to fraction \frac{248}{124}.
\frac{248-123}{124}
Since \frac{248}{124} and \frac{123}{124} have the same denominator, subtract them by subtracting their numerators.
\frac{125}{124}
Subtract 123 from 248 to get 125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}