Evaluate
\frac{20}{3}-2q
Expand
\frac{20}{3}-2q
Share
Copied to clipboard
2-\frac{2}{3}\times 3q-\frac{2}{3}\left(-7\right)
Use the distributive property to multiply -\frac{2}{3} by 3q-7.
2-2q-\frac{2}{3}\left(-7\right)
Cancel out 3 and 3.
2-2q+\frac{-2\left(-7\right)}{3}
Express -\frac{2}{3}\left(-7\right) as a single fraction.
2-2q+\frac{14}{3}
Multiply -2 and -7 to get 14.
\frac{6}{3}-2q+\frac{14}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{6+14}{3}-2q
Since \frac{6}{3} and \frac{14}{3} have the same denominator, add them by adding their numerators.
\frac{20}{3}-2q
Add 6 and 14 to get 20.
2-\frac{2}{3}\times 3q-\frac{2}{3}\left(-7\right)
Use the distributive property to multiply -\frac{2}{3} by 3q-7.
2-2q-\frac{2}{3}\left(-7\right)
Cancel out 3 and 3.
2-2q+\frac{-2\left(-7\right)}{3}
Express -\frac{2}{3}\left(-7\right) as a single fraction.
2-2q+\frac{14}{3}
Multiply -2 and -7 to get 14.
\frac{6}{3}-2q+\frac{14}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{6+14}{3}-2q
Since \frac{6}{3} and \frac{14}{3} have the same denominator, add them by adding their numerators.
\frac{20}{3}-2q
Add 6 and 14 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}